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Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural
network.

* The neural network architecture is called sequence-to-sequence (aka seq2seq) and it
involves two RNNSs.
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Neural Machine Translation (NMT)

The Sequence-to-Sequence Model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.
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Source sentence (input)

Encoder RNN produces an encoding of the source sentence.
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Neural Machine Translation (NMT)

The Sequence-to-Sequence Model Decoder RNNis a
q | q Target sentence (output) Language Model that
Encodmlj of'the: slohu.;cde sentence. p A \ generates target
Provides Initial hidden state he hit me  with a pie <END> sentence, conditioned
for Decoder RNN. .
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Source sentence (input)

Encoder RNN produces an encoding of the source sentence.
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Sequence-to-Sequence is Versatile!

* The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation
* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MT

* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text > short text)
* Dialogue (previous utterances > next utterance)
* Parsing (input text - output parse as sequence)
* Code generation (natural language > Python code)
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Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a Conditional Language Model
* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

* NMT directly calculates P(y|x)

P(ylﬂ.’?) = P(yl|$) P(y2|y1,$) P(y'?’lyl'.-y?: :I:) .- '\P(yleln SR ?yT—lamz
Y
Probability of next target word, given
target words so far and source sentence x

* How to train an NMT system?
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Training an NMT System
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Greedy decoding

* We saw how to generate (or “decode”) the target sentence by taking argmax on each step

of the decoder.
he hit me  with a pie <END>
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<START> he hit  me with a pie

* Thisis greedy decoding (take most probable word on each step)

* Problems with this method?
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Problems With Greedy Decoding

Greedy decoding has no way to undo decisions!

Input: il a m’entarté (he hit me with a pie)
> he
>hehit____
>hehita  (whoops!no going back now...)

How to fix this?
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Exhaustive Search Decoding

* |deally we want to find a (length T) translation y that maximizes

P(y|z) = P(y1|z) P(y2ly1, z) P(ysly1, y2, %) ..., P(yr|y1, - - -, y7—1, 7)

T
— HP(ytlyla <o 7yt—1ax)
t=1

* We could try computing all possible sequences y

e This means that on each step t of the decoder, we’re tracking V* possible partial
translations, where Vis vocab size

* This O(VT) complexity is far too expensive!
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Beam Search Decoding

* Coreidea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)
* kisthe beam size (in practice around 5 to 10)

* Ahypothesis y,, ..., ¥+ has a score which is its log probability:

t
score(yi,...,yt) = log PLm(y1, - - -, ye|x) = ZlogPLM(yAyl, 545 i1 1)
=1

* Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

* Beam search is not guaranteed to find optimal solution
* But much more efficient than exhaustive search!
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Beam Search Decoding: Example



Beam size=k = 2.

<START>

Calculate prob
distribution of next word
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Beam size = k = 2. Blue numbers =score(y1,...,yt) = Z log PLv(¥ilyt, - - -5 Yi-1, )

i=1

-0.7 =log P (he|<START>)

/l:e

<START>

\/

-0.9 = log Pyy (/| <START>)

Take top k words
and compute scores
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Beam size = k = 2. Blue numbers =score(y1, ..., y:) = Y log Pm(ily1, - - -

i=1

-1.7 =log P (hit|<START> he) + -0.7

_0.7 hit
he <
struck
/ -2.9 = log P \(struck|<START> he) +-0.7
<START>
\ -1.6 = log P \,(was|<START> 1) + -0.9
was
/ <
ot
-0.9 J

-1.8 = log P\,(got|<START> 1) + -0.9

For each of the k hypotheses, find
top k next words and calculate scores
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Of these k2 hypotheses,
just keep k with highest scores
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For each of the k hypotheses, find
top k next words and calculate scores

)yi—lrx)



t
Beam size = k = 2. Blue numbers =score(ys, ..., y:) = Y _log Pum(%ilys, - - -, yic1, )

i=1

-2.8

-1.7 a
'0.7 hl‘t <
he < me
/ struck 5
-2.9

<START> -2.9

\ O hit
was <
/ < struck
ot
_O g

9 -3.8
-1.8

Of these k2 hypotheses,
just keep k with highest scores




t
Beam size = k = 2. Blue numbers =score(ys, ..., y:) = Y _log Pum(%ilys, - - -, yic1, )

=1
tart
2.8 _
_1.7 a ple
0.7 bt < 3.4
< me

he 3.3
/ struck 5 ith
-2.9
<START> -2.9 on

\ 1o hit 35
was <
/ < struck
ot
_O g

9 -3.8
-1.8

For each of the k hypotheses, find
top k next words and calculate scores




t
Beam size = k = 2. Blue numbers =score(y1, ..., 4:) = » _log Pim(¥ily1, - - - %i-1,2)

=1
tart
2.8 .
1.7 g pie
0.7 bt < 3.4
< me

he 3.3
/ struck 5 ith
-2.9
<START> -2.9 on

\ 1o hit 35
was <
/ < struck
ot
_O g

9 -3.8
-1.8

Of these k2 hypotheses,
just keep k with highest scores




t
Beam size = k = 2. Blue numbers =score(y1, ..., 4:) = » _log Pim(¥ily1, - - - %i-1,2)

i=1

-4.0 -4.8

in

tart
-2.8
17 z pie with
' a
0.7 P < 3.4 4.5
< me

A 4

he p 3.3 3.7
/’ struc 2.5 with e
2.9
<START> -2.9 on one

< struck
got

9 -3.8
-1.8

\ 16 hit 3.5 4.3
was <
/
0

For each of the k hypotheses, find
top k next words and calculate scores




t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - -, Yi-1, %)

i=1

-4.0 -4.8

in

tart
-2.8
1.7 z pie with
: a
0.7 P < 3.4 4.5
< me

A 4

he p 3.3 -3.7
/ struc -2.5 with > a
-2.9
<START> -2.9 on one

< struck
got

9 -3.8
-1.8

\ 16 hit 3.5 4.3
was <
/
0

Of these k2 hypotheses,
just keep k with highest scores




t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - -, Yi-1, %)

-0.7

i=1

-4.3

/h'e

<START>

pie

tart

\I

9

-4.0 -4.8
tart in
2.8 : :
1.7 pie »  with
' a
hit -3.4 -4.5
p me 3.3 3.7
struc :
2.5 with > a
-2.9
-2.9 on one
-1.6 )
hit -3.5 -4.3
was
struck
ot
g 3.8
-1.8

-4.6

-5.0

pie

tart

-5.3

For each of the k hypotheses, find

top k next words and calculate scores




t
Beam size = k = 2. Blue numbers =score(y1, ..., 4:) = Y log Pum(%ily1, - - -, yi1,2)
=1

-4.0 -4.8

in

A 4

tart
-2.8
1.7 z pie with 4.3
: a ,

_ _ pie
0.7 bt < 3.4 4.5
< me

he 3.3 3.7 tart
/ struck 5 ith X q e
-2.9
<START> -2.9 on one 5.0

\ L6 hit -3.5 4.3 pie
was <
/ < struck tart
ot
_O g

9 3.8 5.3
1.8

This is the top-scoring hypothesis!




t
Beam size = k = 2. Blue numbers =score(ys, ..., y:) = Y _log Pum(%ilys, - - -, yic1, )

-0.

7

i=1

A 4

-4.8

in

/h'e

<START>

with

-4.3

-4.5
-3.7

pie

tart

\I

9

-4.0
tart
-2.8 Z :

i pie
- a 3.4
hit e

p me 3.3
struc .

-2.5 with
-2.9

-2.9 on
16 hit 3.5
was

struck

got 3.8
-1.8

\ 4

one

-4.3

-4.6

-5.0

pie

tart

-5.3

Backtrack to obtain the full hypothesis




Beam Search Decoding: Stopping Criterion

* Ingreedy decoding, usually we decode until the model produces a <tEND> token
* For example: <START> he hit me with a pie <END>

* In beam search decoding, different hypotheses may produce <tEND> tokens on different
timesteps
* When a hypothesis produces <END>, that hypothesis is complete.
* Place it aside and continue exploring other hypotheses via beam search.

* Usually we continue beam search until:
* We reach timestep T (where T is some pre-defined cutoff), or
* We have at least n completed hypotheses (where n is pre-defined cutoff)
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Beam Search Decoding: Finishing Up

* We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis y4, ..., ¥ on our list has a score

score(yi,...,yt) = log PLm(y1, .-, yt|x) = ZlogPLM(yi|y1, casq P15
i=1

Problem: longer hypotheses have lower scores

LLMs: Introduction and Recent Advances
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Other Decoding Techniques

LLMs: Introduction and Recent Advances 3 Tanmoy Chakraborty



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Deterministic vs. Stochastic Decoding Strategies

* The decoding methods which we discussed in the previous lecture — greedy decoding,
exhaustive search and beam search — are all deterministic, i.e., given the same model and
the same input context, they always generate the same output sequence.

* However, to ensure diversity of the generated responses we need stochastic decoding
strategies.

* The stochastic decoding strategies generate diverse responses even for the same model and same
input context.

* |n this lecture, we will look into three stochastic decoding strategies:
1. Top-k Sampling
2. Top-p/ Nucleus Sampling
3. Temperature Sampling
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Random Sampling

* Before moving onto those three stochastic decoding strategies, let’s first look at simple
random sampling.

* If we want to generate a sequence of N words w., ..., Wy, then random sampling can be
written formally as the following algorithm:

<1

w, ~ P(w; | c)

while w; != EOS or i<=N:
i€i+1
w; ~ P(w; | c, w)

Intuitively, if say P(cheese | c=‘l like pizza with loads of’) = 0.35, then on giving ¢ as input 100 times, on random sampling,
'cheese’ is expected to be generated approximately 35 times as the next token, though the exact count may vary due to
randomness.
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Top-k Sampling

* In greedy decoding, the token with the highest probability was chosen at each step,
making it deterministic. Top-k sampling is a stochastic generalization of greedy decoding.

* Top-k sampling involves the following steps:
1. Choose in advance a number of tokens k

2. Given the probability P(w,| c, w,) for all tokens in the vocabulary V, as generated by the model, sort
the tokens by their likelihood, and throw away any token that is not one of the top k most probable
tokens.

3. Renormalize the scores of the k tokens to be a legitimate probability distribution.
4. Randomly sample a token from within these remaining k most-probable tokens according to its
probability.

* When k =1, top-k sampling is identical to greedy decoding.
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Top-k Sampling: Working Example

Probability Distribution for Next Token
Prediction Over V

0.4
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0.2
0.1 Il

| like pizza with loads of
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e | et’s take k=3.

* Step-1: Sort the tokens by their likelihood, and throw away any token that is
not one of the top k most probable tokens.

* In our example, top-3 tokens with P(w|c) are: cheese (0.35), toppings (0.20),
pepperoni (0.12)
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Top-k Sampling: Working Example

Probability Distribution for Next Token
Prediction Over V

0.4
0.3

0.2
0.1 Il

| like pizza with loads of
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* Step-2: Renormalize the scores of the k tokens to be a legitimate probability distribution.
P(w|c)

z:x Etop—k P(x|c).

* Renormalized probabilities: cheese (0.522), toppings (0.299), pepperoni (0.179)

* After renormalization, P..,,,rm (W|c) =
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Top-k Sampling: Working Example

Probability Distribution for Next Token
Prediction Over V

0.4
0.3

0.2
0.1 Il

| like pizza with loads of
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P after =2 g = <
renorm S

renormalization L .
overtop-3tokens | * Step-3: Randomly sample a token from within these remaining k

0.6 most-probable tokens according to its probability after renorm.

0.4 .
0.2
; .

cheese toppings pepperoni

* For generating the next token, w, ~ P, ,.m(W,| C)
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0.08

0.5 — thought
=1 knew
had Il
‘ saw I
1 1 rié sai , n 'nger did!
Problem With Top-k Sampling et 7 wid =
wanted [
told [
. . Distributi liked 1
* Intop-k sampling k is fixed, but the shape e got
of the probability distribution over tokens 0.8
differs in different contexts. 0.8
hot NG
e For example, if we set k = 10: ol
- Sometimes the top 10 tokens will be very likely _ m___1 heaing]
and include most of the probability mass. | ate thepimawhie [t was <l s
» But other times the probability distribution will Narrow prine
Distribution cooking :

be flatter and the top 10 tokens will only
include a small part of the probability mass.

Solution: Top-p / Nucleus Sampling

Image source: https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277
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Top-p / Nucleus Sampling

* The goal of hucleus sampling is the same as top-k sampling, which is to truncate the
distribution to remove the very unlikely tokens.

* Here, we keep the top p percent of the probability mass.

* By measuring probability rather than the number of tokens, the hope is that the measure will be more
robust in very different contexts, dynamically increasing and decreasing the pool of token candidates.

 Formally, given a distribution P(w, | c, w_, ), the top-p vocabulary VP! is the smallest set of
tokens such that:

> Pwle,we) = p

wev (D)
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Top-p Sampling: Working Example

| like pizza with loads of

cheese 0.35
toppings 0.20
pepperoni 0.12
vegetables 0.08
anchovies 0.05

Introduction to LLMs

0.35
0.55
0.67
0.75
0.80

Probability Distribution for Next Token
Prediction Over V
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 Step-1: Get the top-p vocabulary VP which is the smallest
set of tokens suchthat: ). . P(W|c,we) = p

In our example, VP consists of:

cheese (0.35), toppings (0.20)
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Top-p Sampling: Working Example

Probability Distribution for Next Token
Prediction Over V

0.4
0.3

0.2
0.1 Il

| like pizza with loads of

252%3%8§§%5 5§28FECES
cga®s =£ o ° e g * )
T390 & 3 38 S
£
e Step-2: Renormalize the scores of the selected tokens (same procedure as top-k).
Renormalized probabilities: cheese ( 3> 0.64), toppings ( 0.36)
P 0354020 » toppings (-7 020_ '
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Top-p Sampling: Working Example

Probability Distribution for Next Token
Prediction Over V

0.4
0.3

0.2
0.1 Il

| like pizza with loads of

CHE8 S8 ES S 8582 28CEgLge
2538353 38E£8%a 65388FEFE S
°gggs 5 ° ° £8°F &
P.enorm after ages 2 o S <
renormalization over
selected tokens * Step-3: Randomly sample a token from within these selected
1 tokens according to its probability after renormalization.
05 For generating the next token, w, ~ P_.,.;m(W,| C)
0

cheese toppings

Introduction to LLMs Tanmoy Chakraborty




Temperature Sampling

* In temperature sampling, we don’t truncate the distribution but instead reshape it.

* The temperature parameter (t) is incorporated while computing softmax over the logits
of the tokens (for next token prediction).

Normal Softmax Softmax with Temperature
_exp(z) _exp(z/T1)
P(ti) — P(ti) —
Zj exp(z;) Zj exp(z;/T)
« P(t;) : Probability assigned to token t; * T:Temperature parameter
« z;:Logit for token t; * 1>0
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Effect of Temperature

| like pizza with loads of

Probability Distribution for Probability Distribution for Probability Distribution for
Next Token Prediction Over V Next Token Prediction Over V Next Token Prediction Over V
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Effect of Temperature
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* Alow temperature sharpens the probabilities, making the model confident and more deterministic.
* As tapproaches 0 the probability of the most likely word approaches 1.

Lower temperatures make the model more “confident” which can be useful in applications like question
answering.

* A high temperature flattens the probabilities, encouraging diversity and creativity in outputs but with a risk
of incoherence.

Thus, higher temperatures make the model more “creative” which can be useful when generating prose, for
example.

Introduction to LLMs
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NMT: The First Big Success Story of NLP Deep Learning

Neural Machine Translation went from a fringe research attemptin 2014 to the leading standard method in

2016
e 2014: First seq2seq paper published [Sutskever et al. 2014]
e 2016: Google Translate switches from SMT to NMT - and by 2018 everyone had
* https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

B Microsoft &svstran  Google
BaiEE ®2umme  Tencentiil  (S)igmiEm

www-163.-com

* This was amazing!
* SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems

trained by small groups of engineers in a few months

Tanmoy Chakraborty
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https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Issues With RNN

e Linear interaction distance
* Bottleneck problem
* Lack of parallelizability

ATTENTION

%3) LLMs: Introduction and Recent Advances Tanmoy Chakraborty
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