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Neural Machine Translation?
• Neural Machine Translation (NMT) is a way to do Machine  Translation with a single neural 

network.

• The neural network architecture is called sequence-to-sequence  (aka seq2seq) and it 
involves two RNNs.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.
Note: This diagram shows test time
behavior: decoder output is fed in as

next step’s input

Decoder RNN is a 
Language Model that 

generates target 
sentence, conditioned 

on encoding.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Sequence-to-Sequence is Versatile!
• The general notion here is an encoder-decoder model

• One neural network takes input and produces a neural representation
• Another network produces output based on that neural representation
• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence:
• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
• Parsing (input text → output parse as sequence)
• Code generation (natural language → Python code)

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Neural Machine Translation (NMT)
• The sequence-to-sequence model is an example of a Conditional Language Model

• Language Model because the decoder is predicting the next word of the target sentence y
• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates 𝑃(𝑦|𝑥)

• How to train an NMT system?

Probability of next target word, given
target words so far and source sentence 𝑥

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Training an NMT System

Seq2seq is optimized as a 
single system. Backpropagation 

operates “end-to-end”.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Greedy decoding
• We saw how to generate (or “decode”) the target sentence by taking argmax on each step 

of the decoder.

• This is greedy decoding (take most probable word on each step)
• Problems with this method?

ar
gm

ax

ar
gm

ax

ar
gm

ax

he hit me with a pie <END>

<START> he hit me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Problems With Greedy Decoding
• Greedy decoding has no way to undo decisions!

• Input: il a m’entarté
• → he  
• → he hit  
• → he hit a  

(he hit me with a pie)

(whoops! no going back now…)

How to fix this?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Exhaustive Search Decoding
• Ideally we want to find a (length T) translation y that maximizes

• We could try computing all possible sequences y

• This means that on each step t of the decoder, we’re tracking Vt possible  partial 
translations, where V is vocab size

• This O(VT) complexity is far too expensive!

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Beam Search Decoding
• Core idea: On each step of decoder, keep track of the k most  probable partial 

translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10)

• A hypothesis 𝑦1, … , 𝑦𝑡  has a score which is its log probability:

• Scores are all negative, and higher score is better
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution
• But much more efficient than exhaustive search!

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Beam Search Decoding: Example



<START>

Calculate prob
distribution of next word

Beam size = k = 2.



<START>

he

I

-0.7 = log PLM(he|<START>)

-0.9 = log PLM(I|<START>)

Take top k words 
and compute scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6 = log PLM(was|<START> I) + -0.9

-1.8 = log PLM(got|<START> I) + -0.9

-1.7 = log PLM(hit|<START> he) + -0.7

-2.9 = log PLM(struck|<START> he) + -0.7

For each of the k hypotheses, find
top k next words and calculate scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,
just keep k with highest scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5 = log PLM(me|<START> he hit) + -1.7

-2.8 = log PLM(a|<START> he hit) + -1.7

-3.8 = log PLM(struck|<START> I was) + -1.6

-2.9 = log PLM(hit|<START> I was) + -1.6

For each of the k hypotheses, find
top k next words and calculate scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,
just keep k with highest scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-3.4

For each of the k hypotheses, find
top k next words and calculate scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-3.4

Of these k2 hypotheses,
just keep k with highest scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

For each of the k hypotheses, find
top k next words and calculate scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

Of these k2 hypotheses,
just keep k with highest scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find
top k next words and calculate scores

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Beam size = k = 2. Blue numbers =

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis
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Beam Search Decoding: Stopping Criterion
• In greedy decoding, usually we decode until the model produces  a <END> token

• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on different 
timesteps
• When a hypothesis produces <END>, that hypothesis is complete.
• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:
• We reach timestep T (where T is some pre-defined cutoff), or
• We have at least n completed hypotheses (where n is pre-defined cutoff)

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Beam Search Decoding: Finishing Up
• We have our list of completed hypotheses.

• How to select top one with highest score?

• Each hypothesis 𝑦1, … , 𝑦𝑡  on our list has a score

• Problem: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select the top one instead:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Other Decoding Techniques

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Deterministic vs. Stochastic Decoding Strategies
• The decoding methods which we discussed in the previous lecture – greedy decoding, 

exhaustive search and beam search – are all deterministic, i.e., given the same model and 
the same input context, they always generate the same output sequence.

• However, to ensure diversity of the generated responses we need stochastic decoding 
strategies.
• The stochastic decoding strategies generate diverse responses even for the same model and same 

input context. 

• In this lecture, we will look into three stochastic decoding strategies:
1. Top-k Sampling
2. Top-p / Nucleus Sampling
3. Temperature Sampling
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Random Sampling
• Before moving onto those three stochastic decoding strategies, let’s first look at simple 

random sampling.
• If we want to generate a sequence of N words w1, …, wN , then random sampling can be 

written formally as the following algorithm: 
    i ← 1

    wi ∼ P(wi | c)

    while wi != EOS or i<=N:

     i ← i + 1

     wi ∼ P(wi | c, w<i)  

Intuitively, if say P(cheese | c=‘I like pizza with loads of’) = 0.35, then on giving c as input 100 times, on random sampling, 
'cheese' is expected to be generated approximately 35 times as the next token, though the exact count may vary due to 
randomness.
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Top-k Sampling
• In greedy decoding, the token with the highest probability was chosen at each step, 

making it deterministic. Top-k sampling is a stochastic generalization of greedy decoding.

• Top-k sampling involves the following steps:
1. Choose in advance a number of tokens k
2. Given the probability P(wt | c, w<t) for all tokens in the vocabulary V, as generated by the model, sort 

the tokens by their likelihood, and throw away any token that is not one of the top k most probable 
tokens.

3. Renormalize the scores of the k tokens to be a legitimate probability distribution. 
4. Randomly sample a token from within these remaining k most-probable tokens according to its 

probability.

• When k = 1, top-k sampling is identical to greedy decoding.
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Top-k Sampling: Working Example

• Let’s take k=3.

• Step-1: Sort the tokens by their likelihood, and throw away any token that is 
not one of the top k most probable tokens.
• In our example, top-3 tokens with P(w|c) are:  cheese (0.35), toppings (0.20), 

pepperoni (0.12)
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Top-k Sampling: Working Example

• Step-2: Renormalize the scores of the k tokens to be a legitimate probability distribution. 

• After renormalization, 𝑃𝑟𝑒𝑛𝑜𝑟𝑚 𝑤 𝑐 =
𝑃(𝑤|𝑐)

σ𝑥 ∈𝑡𝑜𝑝−𝑘 𝑃(𝑥|𝑐)
.

• Renormalized probabilities:  cheese (0.522), toppings (0.299), pepperoni (0.179)
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Top-k Sampling: Working Example

• Step-3:  Randomly sample a token from within these remaining k 
most-probable tokens according to its probability after renorm.

• For generating the next token, wt ~ Prenorm(wt| c)
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Problem With Top-k Sampling
• In top-k sampling k is fixed, but the shape 

of the probability distribution over tokens 
differs in different contexts. 

• For example, if we set k = 10:
• Sometimes the top 10 tokens will be very likely 

and include most of the probability mass.
• But other times the probability distribution will 

be flatter and the top 10 tokens will only 
include a small part of the probability mass.

Solution: Top-p / Nucleus Sampling
Image source: https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277

https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277
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Top-p / Nucleus Sampling
• The goal of nucleus sampling is the same as top-k sampling, which is to truncate the 

distribution to remove the very unlikely tokens.

• Here, we keep the top p percent of the probability mass.
• By measuring probability rather than the number of tokens, the hope is that the measure will be more 

robust in very different contexts, dynamically increasing and decreasing the pool of token candidates.

• Formally, given a distribution P(wt | c, w<t ), the top-p vocabulary V(p) is the smallest set of 
tokens such that:

෍

𝑤∈𝑉(𝑝)

𝑃(𝑤|𝑐, 𝑤<𝑡) ≥  𝑝
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Top-p Sampling: Working Example

• Let’s take p=0.5

• Step-1: Get the top-p vocabulary V(p) , which is the smallest 
set of tokens such that: σ𝑤∈𝑉(𝑝) 𝑃(𝑤|𝑐, 𝑤<𝑡) ≥  𝑝

In our example, V(p) consists of:  

cheese (0.35), toppings (0.20)
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Token (w) P(w|c) Cumulative P

cheese 0.35 0.35

toppings 0.20 0.55

pepperoni 0.12 0.67

vegetables 0.08 0.75

anchovies 0.05 0.80
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Top-p Sampling: Working Example

• Step-2: Renormalize the scores of the selected tokens (same procedure as top-k).

Renormalized probabilities:  cheese ( 𝟎.𝟑𝟓

𝟎.𝟑𝟓+𝟎.𝟐𝟎
= 𝟎. 𝟔𝟒), toppings ( 𝟎.𝟐𝟎

𝟎.𝟑𝟓+𝟎.𝟐𝟎
= 𝟎. 𝟑𝟔)
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Top-p Sampling: Working Example

• Step-3:  Randomly sample a token from within these selected 
tokens according to its probability after renormalization.

• For generating the next token, wt ~ Prenorm(wt| c)

0

0.1

0.2

0.3

0.4

ch
ee

se
to

pp
in

gs
pe

pp
er

on
i

ve
ge

ta
bl

es
an

ch
ov

ie
s

ol
iv

es
m

us
hr

oo
m

s
sa

uc
e

op
tio

ns
ga

rli
c

sp
ic

es fu
n

cr
us

t
pi

ne
ap

pl
e

ja
la

pe
ño

s
fr

ie
nd

s
tim

e
m

es
s

re
gr

et
ha

pp
in

es
s

w
at

er …

Probability Distribution for Next Token 
Prediction Over V

ModelI like pizza with loads of

0

0.5

1

cheese toppings

Prenorm after 
renormalization over 

selected tokens



Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Temperature Sampling
• In temperature sampling, we don’t truncate the distribution but instead reshape it.

• The temperature parameter (τ) is incorporated while computing softmax over the logits 
of the tokens (for next token prediction). 

Normal Softmax

𝑃 𝑡𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)

• 𝑃 𝑡𝑖  : Probability assigned to token 𝑡𝑖

•  𝑧𝑖  : Logit for token 𝑡𝑖

Softmax with Temperature

𝑃 𝑡𝑖 =
exp(𝑧𝑖/τ)

σ𝑗 exp(𝑧𝑗/τ)

• τ : Temperature parameter
• τ > 0
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Effect of Temperature
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Effect of Temperature
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• A low temperature sharpens the probabilities, making the model confident and more deterministic.
• As τ approaches 0 the probability of the most likely word approaches 1.
• Lower temperatures make the model more “confident” which can be useful in applications like question 

answering.
• A high temperature flattens the probabilities, encouraging diversity and creativity in outputs but with a risk 

of incoherence.
• Thus, higher temperatures make the model more “creative” which can be useful when generating prose, for 

example. 



Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

NMT: The First Big Success Story of NLP Deep Learning
Neural Machine Translation went from a fringe research attempt in 2014 to the leading  standard method in 
2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]
• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone had

• https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

• This was amazing!
• SMT systems, built by hundreds of engineers over many years, were outperformed  by NMT systems                

trained by small groups of engineers in a few months

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
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LLMs: Introduction and Recent Advances

Issues With RNN
• Linear interaction distance
• Bottleneck problem
• Lack of parallelizability

ATTENTION

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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